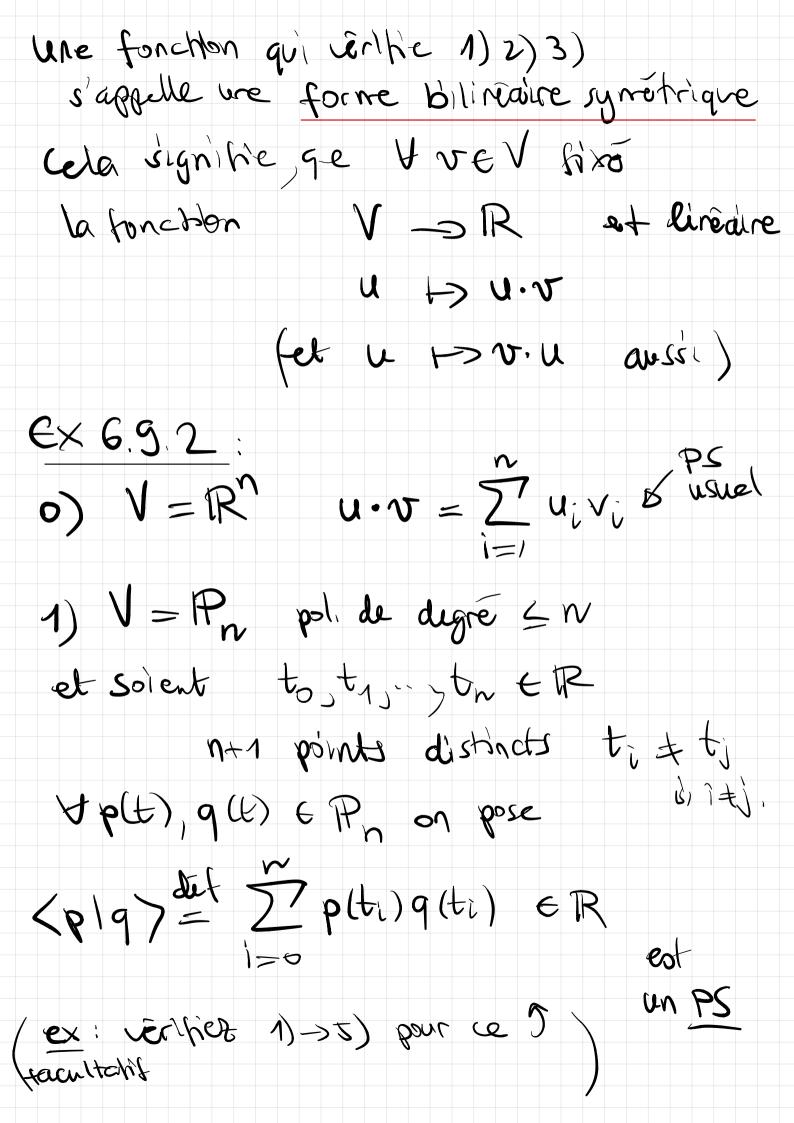
Cours 13.1 S 6,9 Espaces vectoriels
avec produit scalaire 10.12.24 (NPO: evaluation) général ser le produit scalaire usuel (dans Rⁿ) Seance Rag à un esp. vecto V. vendred: 17 janver 2025 Det 6.9.1: Soit V un espace cotoriel [whalem] (de din gelconge, y conpris din(V)=+00) on appelle produit scarcine sur V, toute to notion (ulv) (ulv),...) $V \times V \longrightarrow \mathbb{R}$ $(u, v) \mapsto u \cdot v$ qu'i verifie les cond suiventes: 1) $u \cdot v = v \cdot u$ (syretric) 2) $(u+v)\cdot w = u\cdot w + v\cdot w$ linearle (xv) $(xv)\cdot v = (xv)$ $(xv)\cdot v = x$ $(xv)\cdot v = x$ 4) u·u > OR (positivité) (digénéré) 5) u·u = or 40 u=0v



1)
$$t_0 = -1$$
 $t_1 = 0$ $t_2 = 1$
 $P_2 \times P_2 \rightarrow P_2$
 $(P, q) \mapsto (P|q) = P(-1)q(-1)$
 $+ p(0)q(0) + p(0)q(0)$

2) $V = M_{nxn}(R)$ on pose

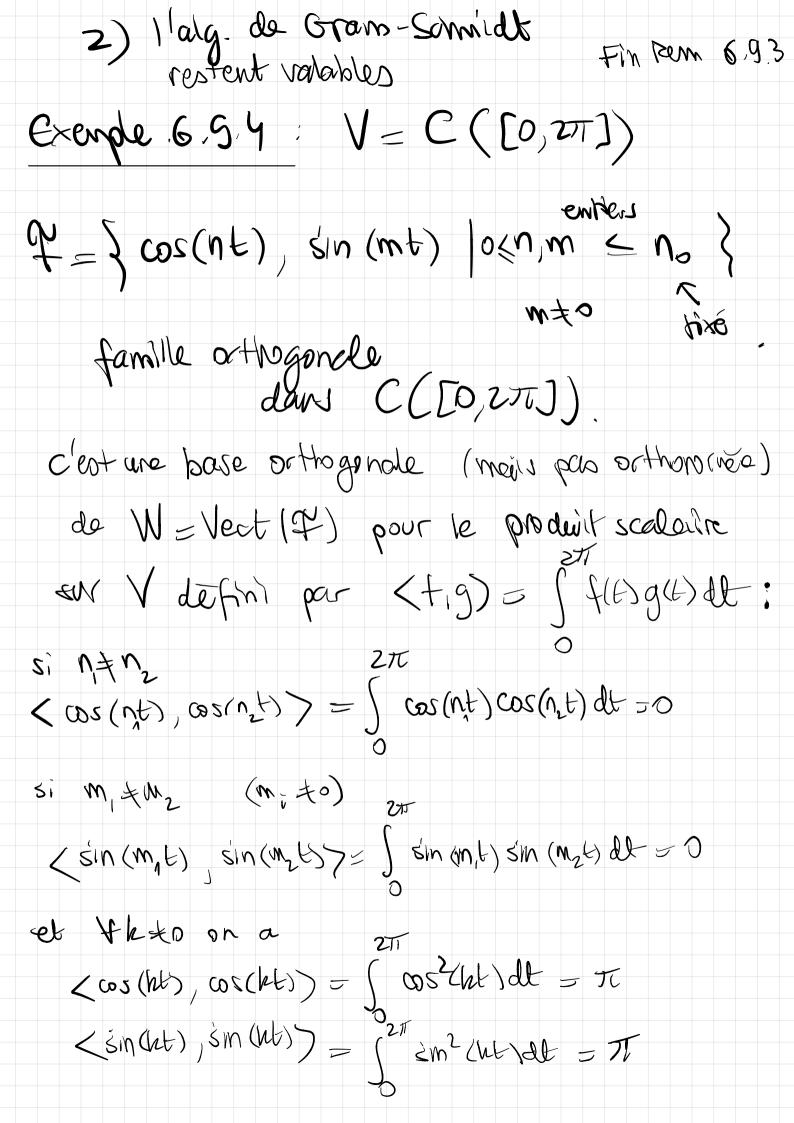
 $\langle A|B \rangle = Tr(AB) = \sum_{i=1}^{n} \langle AB \rangle_{ii}$
evi on PS.

3) $V = C([a|b])$ a $\langle b \in R$
 $\langle f_1g \in C([a|b])$ on pose

 $\langle f_1g = \int_{-\infty}^{\infty} f(b)g(b)db \in R$
 $\langle f_1g = \int_{-\infty}^{\infty} f(b)g(b)db \in R$

3') V = C ([0,27]) & très uti	
3) $V = C([0,2\pi])$ at their which on the iig	inal.
Remarge 6.9.3: SI V est mun	du PS.
alors on peut déphir les rotions	do
- longueu/voine d'un ve V: 1/v/1= - cauchy-schwarz:	= / < 0 / 0>
_ Cauchy-schwast;	= \ v.v.
	Anrel
- Iregalité du 1:	
11uto N = 11ull + 11vll	Annel
· U Ct v Lu : intilonazortion	
- angles entre uv (grâce à C	·S)
$\theta = \arccos\left(\frac{\ u\ \ v\ }{\ u \cdot v\ }\right)$	
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
_ le Thm. de projection orthogona	le;
Si WCV et dim (W) est fil	ile
alois il existe ure TL	
	que

 $Im(proj_{W}) = W$ tg Ker (proju) = W = {VEV | V·W=0} et il existe une décomp unique AUEV $\Lambda = b (\Omega)^{M} (\Lambda) + 5$ EW EW+ (It dim (W) + dim (W+) = dim V) - le procédé de Gran-schridt s'applique Si W est de d'un finle: alors W possède we base or thogorale cad 3 wn, we E W arec Willus (ad w. w. =0) - les formules 1) $\rho roj w(v) = \sum_{i=1}^{p} (v \cdot w_i) w_i$ si junioup) est une base orthog. de W



puis Yn, m > 0 2TT $\langle \cos(nt), \sin(mt) \rangle = \int \cos(nt)\sin(mt)dt = 0$ et pour N=0 cos(nt)=1 4 te [0,27] et donc $<1,1>= \int_{0}^{2\pi} 1 dt = 2\pi$ Utilité: Coeff. de Fourier d'une fonction Soft fe C([0,27]) et W=bet(F)

arec F base orthogonale pour <., > circleson

Alors (a formule 1) plus hart s'applique. $p_{N}(t) = \frac{a_0}{2} + a_1 cos(t) + a_2 cos(2t) + \cdots + a_n cos(n_0t)$ + b, sin (t) + bz sin (2t)+ - + bnsin (not) $\frac{a_0}{z} = \frac{\angle + 17}{\angle 1, 17} = \frac{\int_{0}^{2\pi} + (t) dt}{2\pi t}$ (NB; 1=cos(0t)) $a_{k} = \frac{\langle f, cos(ht) \rangle}{\langle cos(ht), cos(ht) \rangle} b_{h} = \frac{\langle f, sin(ht) \rangle}{\langle sin(ht), sin(ht) \rangle}$

cad $a_k = \int_0^\infty f(t) \cos(ht) dt$ $a_0 = \int_0^{2\pi} \frac{f(t)}{\pi} dt$ $b_{k} = \int_{0}^{2\pi} \frac{f(t) \sin(ht) dt}{t}$ les assanbu s'appellent les coefficients de Fourier de f et pernettent d'approximent f avec use fon toon de W plus de détails: Analyse n avec n>2. fin 6.9.4 Mêre i V=R° on peut avoir d'autres produits scalaires que le p.s. usuel: Soit AE Mn×n(R). On pose Dét. 6.9.5 U.AV:= U.(AV)

pon viewx P.S. usuel. Yu,ver?

NB; Si A=In on retroue le P.S. usual (bandlement)

Rappel: Yu, v ElR" on a $x \cdot y = x \cdot y \stackrel{*}{=} y^{\top} x = y \cdot x$ PS usual produit matricel (* vient du fait ge a = at y a et (R)= IR)

et (AB)T=BTAT Rem. 6.9.6: pour u, VER? on a $u \cdot \Delta v = u \cdot (Av) = u^{T}(Av) = (Av) u =$ = VT ATU = V. (ATU) = V. Tu On en conclut ge u, v = v, u (tu, ver) si et seu renent si A=AT cold A est syretrige Done pour A syrétriqe la fondion vertire 1)2)3) $\mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ de la definition (u, 5) 1> 45 Duf 6.3.1 scalable

on doit encore voir si u, u = utAu >0? Remarque: $A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ $VTAu = (u, u_2) \begin{pmatrix} -10 \\ 0-1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = (u, u_2) \begin{pmatrix} -u_1 \\ -u_2 \end{pmatrix}$ $=-u_1^2-u_2^2<0$ (s) u_1 ou $u_2\neq 0$) on doit donc cherder des A (sym) to utAuzo Yuerz DEF 6.9.7: Pour AFD_{n×n}(IR) sym. (A=A^T) on dit que A est définie positie si Yuern uau = ut Au >0 Pour moux corprendre la condition d'alles sus et savoir quard elle est éclifiée

on étudie plus en popondeur les

Chapt: T	latrices symmetriques
•	latrices symétriques et formes quadratiques (réelles)
871 Dia	gonalisation des matrices sym.
	(Important), Soit A E Mnxh(IR) carrier (a prior) quelonque)
On dut que	A est orthogonalement diagonalisable
sill existe	
	e orthogonale P & Maxn(R) donc P = PT)
	ce diagonale $D \in \Pi_{n \times n}(\mathbb{R})$
telles que f	+=PDPT (ad A=PDPT)
	et D = P'AP
Ains) A est	orthogonalement diagonalicable
SO Aw	r diagonalisable
et)	IRM possède une base orthonormée vecteurs propres de A
di_	recteurs himpies de H.

Rem: Si A est orthog. diagonalisable, alors
A est forcement symétolere! En effet, 37 octhogorale et D diseporale tog A = PDPT => $A^{T} = (PDP^{T})^{T} = (P^{T})^{T}D^{T}P^{T} = ADP^{T} = A$ $D = D^{T} car D diagonale.$ Ce qui est vainant supranant (voire miraculeux) c'est que la réciproque est vraire (su(R): Rom: Une matrice diagonalisable A possade togiours une base de R' fornce de vect propres de A et on peut toujours orthonormer une vase de 112° (via Grann-Schmidt per exemple) mais en général en orthogonalisant on n'obtent plus une vate de vecteurs propres de A Voici le mirade qui se passe sur PR:

Théorème 7.1.2 (Diagonalisation matrices synétriques Soit A ∈ Man (TR). (Important) 1) Si A = AT et $\sqrt{1/\sqrt{2}} \in \mathbb{R}^n$ sont des ect. propres de la col. propres $\sqrt{1/\sqrt{2}} = \sqrt{1/\sqrt{2}}$ are $\sqrt{1/\sqrt{2}} = \sqrt{1/\sqrt{2}} = \sqrt{1/\sqrt{$ alors v, \perp v_2 (long les espaces propres E_{λ_1} el E_{λ_2} sont orthogonaux)? 2) A est orthogonalement diagonalisable & A=AT 3) Si A=AT, alors i) Toutes les val, propres de A sont réelles En portailles A possade n valeurs propres comptées avec leur multiplicité (ce sont les racines de CA(t)) ii) I re Spc (A) = R (ad ral propre de A) on a dim $(E_{\chi}) = \text{mult}(\chi)$ iù) 巨文 C 巨声 sì 为文ル

4) Si A=AT on a la décomposition spectrale de A

 $A = \lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + \dots + \lambda_n u_n u_n^T$

où (un, un) est une base orthonornée (ordonnée)
de R'et u, est un exteur propre de A
associé à la valeur propre $\lambda_i \in Spe(A)$.

(FIN 131)